Date:
Tumble dryers offer a fast and convenient way of drying textiles independent of weather conditions and therefore are frequently used in ordinary households. However, artificial drying of textiles consumes considerable amounts of energy, approximately 8.2 percent of the residential electricity consumption is for drying of textiles in northern European countries (Cranston et al., 2019). Several authors have investigated the aspects of the clothes drying cycle with experimental and numerical methods to understand and improve the process. The first turning point study on understanding the physics of evaporation for tumble dryers was presented by Lambert et al. (1991) in the early 90s. With the aid of Chilton_Colburn analogy, they introduced the concept of area-mass transfer coefficient to address evaporation rate. Afterwards, several experimental or numerical studies were published based on this concept, and furthermore, the model was then developed into 0-dimensional (Deans, 2001) and 1-dimensional (Wei et al., 2017) to gain more accuracy. The evaporation rate is considered to be the main system parameter for dryers with which other performance parameters including drying time, effectiveness, moisture content and efficiency can be estimated.
More recent literature focused on utilizing dimensional analysis or image processing techniques to correlate drying indices with system parameters. However, the validity of these regressed models is machine-specific, and hence, cannot be generalized yet. All the previous models for estimating the evaporation rate in tumble dryers are discussed. The review of the related literature showed that all of the previous models for the prediction of the evaporation rate in the clothes dryers have some limitations in terms of accuracy and applicability.