Concurrent factors determine toughening in the hydraulic fracture of poroelastic composites

Journal: 

Meccanica

Date: 

2017

Authors: 

Lucantonio, Alessandro and Noselli, Giovanni

Brittle materials fail catastrophically. In consequence of their limited flaw-tolerance, failure occurs by localized fracture and is typically a dynamic process. Recently, experiments on epithelial cell monolayers have revealed that this scenario can be significantly modified when the material susceptible to cracking is adhered to a hydrogel substrate. Thanks to the hydraulic coupling between the brittle layer and the poroelastic substrate, such a composite can develop a toughening mechanism that relies on the simultaneous growth of multiple cracks. Here, we study this remarkable behaviour by means of a detailed model, and explore how the material and loading parameters concur in determining the macroscopic toughness of the system. By extending a previous study, our results show that rapid loading conveys material toughness by promoting distributed cracking. Moreover, our theoretical findings may suggest innovative architectures of flaw-insensitive materials with higher toughness.

@article{lucantonio2017concurrent,
  title={Concurrent factors determine toughening in the hydraulic fracture of poroelastic composites},
  author={Lucantonio, Alessandro and Noselli, Giovanni},
  journal={Meccanica},
  volume={52},
  number={14},
  pages={3489--3498},
  year={2017},
  publisher={Springer}
}