A reduced order modeling technique to study bifurcating phenomena: Application to the gross-pitaevskii equation


SIAM Journal on Scientific Computing




Pichi, F. and Quaini, A. and Rozza, G.

We propose a computationally efficient framework to treat nonlinear partial differential equations having bifurcating solutions as one or more physical control parameters are varied. Our focus is on steady bifurcations. Plotting a bifurcation diagram entails computing multiple solutions of a parametrized, nonlinear problem, which can be extremely expensive in terms of computational time. In order to reduce these demanding computational costs, our approach combines a continuation technique and Newton's method with a reduced order modeling (ROM) technique, suitably supplemented with a hyperreduction method. To demonstrate the effectiveness of our ROM approach, we trace the steady solution branches of a nonlinear Schrödinger equation, called the Gross{Pitaevskii equation, as one or two physical parameters are varied. In the two-parameter study, we show that our approach is 60 times faster in constructing a bifurcation diagram than a standard full order method.